2,361 research outputs found

    Josephson junction on one edge of a two dimensional topological insulator affected by magnetic impurity

    Full text link
    Current-phase relation in a Josephson junction formed by putting two s-wave superconductors on the same edge of a two dimensional topological insulator is investigated. We consider the case that the junction length is finite and magnetic impurity exists. The similarity and difference with conventional Josephson junction is discussed. The current is calculated in the semiconductor picture. Both the 2Ï€2\pi- and 4Ï€4\pi-period current-phase relations (I2Ï€(Ï•),I4Ï€(Ï•)I_{2\pi}(\phi), I_{4\pi}(\phi)) are studied. There is a sharp jump at Ï•=Ï€\phi=\pi and Ï•=2Ï€\phi=2\pi for I2Ï€I_{2\pi} and I4Ï€I_{4\pi} respectively in the clean junction. For I2Ï€I_{2\pi}, the sharp jump is robust against impurity strength and distribution. However for I4Ï€I_{4\pi}, the impurity makes the jump at Ï•=2Ï€\phi=2\pi smooth. The critical (maximum) current of I2Ï€I_{2\pi} is given and we find it will be increased by asymmetrical distribution of impurity.Comment: 7 pages, 5 figure

    Andreev reflection through a quantum dot coupled with two ferromagnets and a superconductor

    Full text link
    We study the Andreev reflection (AR) in a three terminal mesoscopic hybrid system, in which two ferromagnets (F1_1 and F2_2) are coupled to a superconductor (S) through a quantum dot (QD). By using non-equilibrium Green function, we derive a general current formula which allows arbitrary spin polarizations, magnetization orientations and bias voltages in F1_1 and F2_2. The formula is applied to study both zero bias conductance and finite bias current. The current conducted by crossed AR involving F1_1, F2_2 and S is particularly unusual, in which an electron with spin σ\sigma incident from one of the ferromagnets picks up another electron with spin σˉ\bar{\sigma} from the other one, both enter S and form a Cooper pair. Several special cases are investigated to reveal the properties of AR in this system.Comment: 15 pages, 7 figures, LaTe

    Probing Spin States of Coupled Quantum Dots by dc Josephson Current

    Full text link
    We propose an idea for probing spin states of two coupled quantum dots (CQD), by the dc Josephson current flowing through them. This theory requires weak coupling between CQD and electrodes, but allows arbitrary inter-dot tunnel coupling, intra- and inter- dot Coulomb interactions. We find that the Coulomb blockade peaks exhibit a non-monotonous dependence on the Zeeman splitting of CQD, which can be understood in terms of the Andreev bound states. More importantly, the supercurrent in the Coulomb blockade valleys may provide the information of the spin states of CQD: for CQD with total electron number N=1,3 (odd), the supercurrent will reverse its sign if CQD becomes a magnetic molecule; for CQD with N=2 (even), the supercurrent will decrease sharply around the transition between the spin singlet and triplet ground states of CQD.Comment: 10 pages, 3 figure

    Theory of Nonequilibrium Coherent Transport through an Interacting Mesoscopic Region Weakly Coupled to Electrodes

    Full text link
    We develop a theory for the nonequilibrium coherent transport through a mesoscopic region, based on the nonequilibrium Green function technique. The theory requires the weak coupling between the central mesoscopic region and the multiple electrodes connected to it, but allows arbitrary hopping and interaction in the central region. An equation determining the nonequilibrium distribution in the central interacting region is derived and plays an important role in the theory. The theory is applied to two special cases for demonstrations, revealing the novel effects associated with the combination of phase coherence, Coulomb interaction, and nonequilibrium distribution.Comment: 10 Pages, 5 figure

    Inverted level populations of hydrogen atoms in ionized gas

    Full text link
    Context. Level population inversion of hydrogen atoms in ionized gas may lead to stimulated emission of hydrogen recombination lines, and the level populations can in turn be affected by powerful stimulated emissions. Aims. In this work the interaction of the radiation fields and the level population inversion of hydrogen atoms is studied. The effect of the stimulated emissions on the line profiles is also investigated. Methods. Our previous nl-model for calculating level populations of hydrogen atoms and hydrogen recombination lines is improved. The effects of line and continuum radiation fields on the level populations are considered in the improved model. By using this method the properties of simulated hydrogen recombination lines and level populations are used in analyses. Results. The simulations show that hydrogen radio recombination lines are often emitted from the energy level with an inverted population. The widths of Hnα\alpha lines can be significantly narrowed by strong stimulated emissions to be even less than 10 km s−1^{-1}. The amplification of hydrogen recombination lines is more affected by the line optical depth than by the total optical depth. The influence of stimulated emission on the estimates of electron temperature and density of ionized gas is evaluated. We find that comparing multiple line-to-continuum ratios is a reliable method for estimating the electron temperature, while the effectiveness of the estimation of electron density is determined by the relative significance of stimulated emission.Comment: Accepted for published in A&A. 25 pages, 13 figure

    Instanton Effects in QCD Sum Rules for the 0++0^{++} Hybrid

    Full text link
    In this paper, we study instanton contributions to the correlator of the hybrid current gqˉσμνGνμaTaqg\bar q \sigma_{\mu\nu}G^a_{\nu\mu}T^a q. These contributions are then included in a QCD sum-rule analysis of the isoscalar 0++0^{++} hybrid mass. We find a mass at 1.83 GeV for the (uˉug+dˉdg)/2(\bar uug+\bar ddg)/\sqrt{2} hybrid. However, for the sˉsg\bar ssg hybrid, we find the sum rules are unstable. We also study non-zero width effects, which affect the mass prediction. The mixing effects between these two states are studied and we find QCD sum rules support the existence of a flavor singlet hybrid with mass at around 1.9 GeV. Finally, we study the mixing effects between hybrid and glueball currents. The mixing between the (uˉug+dˉdg)/2(\bar uug+\bar ddg)/\sqrt{2}(sˉsg\bar ssg) and the glueball causes two states, one in the region 1.4-1.8 GeV(1.4-2.2 GeV), and the other in the range 1.8-2.2 GeV(2.2-2.6 GeV).Comment: 12 pages, revised versio

    Ne II Observations of Gas Motions in Compact and Ultracompact H II Regions

    Get PDF
    We present high spatial and spectral resolution observations of 16 Galactic compact and ultracompact H II regions in the [Ne II] 12.8 mu m fine-structure line. The small thermal width of the neon line and the high dynamic range of the maps provide an unprecedented view of the kinematics of compact and ultracompact H II regions. These observations solidify an emerging picture of the structure of ultracompact H II regions suggested in our earlier studies of G29.96-0.02 and Mon R2 IRS 1; systematic surface flows, rather than turbulence or bulk expansion, dominate the gas motions in the H II regions. The observations show that almost all of the sources have significant (5-20 km s(-1)) velocity gradients and that most of the sources are limb-brightened. In many cases, the velocity pattern implies tangential flow along a dense shell of ionized gas. None of the observed sources clearly fits into the categories of filled expanding spheres, expanding shells, filled blister flows, or cometary H II regions formed by rapidly moving stars. Instead, the kinematics and morphologies of most of the sources lead to a picture of H II regions confined to the edges of cavities created by stellar wind ram pressure and flowing along the cavity surfaces. In sources where the radio continuum and [Ne II] morphologies agree, the majority of the ionic emission is blueshifted relative to nearby molecular gas. This is consistent with sources lying on the near side of their natal clouds being less affected by extinction and with gas motions being predominantly outward, as is expected for pressure-driven flows.NSF AST-0607312, NSF-0708074SOFIA USRA8500-98-008NYSTAR Faculty Development ProgramNASA NNG 04-GG92G, CAN-NCC5-679Lunar and Planetary InstituteAstronom

    Isospin effect on nuclear stopping in intermediate energy Heavy Ion Collisions

    Get PDF
    By using the Isospin Dependent Quantum Molecular Dynamics Model (IQMD), we study the dependence of nuclear stopping Q_{ZZ}/A and R in intermediate energy heavy ion collisions on system size, initial N/Z, isospin symmetry potential and the medium correction of two-body cross sections. We find the effect of initial N/Z ratio, isospin symmetry potential on stopping is weak. The excitation function of Q_{ZZ}/A and R depends on the form of medium correction of two-body cross sections, the equation of state of nuclear matter (EOS). Our results show the behavior of the excitation function of Q_{ZZ}/A and R can provide clearer information of the isospin dependence of the medium correction of two-body cross sections.Comment: 3 pages including 4 figure
    • …
    corecore